197 research outputs found

    Vaccine Innovation and Adoption: Polio Vaccines in the UK, the Netherlands and West Germany, 1955–1965

    Get PDF
    Lindner U, Blume S. Vaccine Innovation and Adoption. Polio Vaccines in the UK, the Netherlands and West Germany 1955-1965. Medical History. 2006;(50):425-446

    Assessing health technologies in a changing world

    Get PDF

    Dancing with death. A historical perspective on coping with covid-19

    Get PDF
    In this paper, we address the question on how societies coped with pandemic crises, how they tried to control or adapt to the disease, or even managed to overcome the death trap in history. On the basis of historical research, we describe how societies in the western world accommodated to or exited hardship and restrictive measures over the course of the last four centuries. In particular, we are interested in how historically embedded citizens' resources were directed towards living with and to a certain extent accepting the virus. Such an approach of “applied history” to the management of crises and public hazards, we believe, helps address today's pressing question of what adaptive strategies can be adopted to return to a normalized life, including living with socially acceptable medical, hygienic and other pandemic‐related measures

    The handbook for standardised field and laboratory measurements in terrestrial climate-change experiments and observational studies

    Get PDF
    Climate change is a worldwide threat to biodiversity and ecosystem structure, functioning, and services. To understand the underlying drivers and mechanisms, and to predict the consequences for nature and people, we urgently need better understanding of the direction and magnitude of climate‐change impacts across the soil–plant–atmosphere continuum. An increasing number of climate‐change studies is creating new opportunities for meaningful and high‐quality generalisations and improved process understanding. However, significant challenges exist related to data availability and/or compatibility across studies, compromising opportunities for data re‐use, synthesis, and upscaling. Many of these challenges relate to a lack of an established “best practice” for measuring key impacts and responses. This restrains our current understanding of complex processes and mechanisms in terrestrial ecosystems related to climate change

    Transverse-momentum and pseudorapidity distributions of charged hadrons in pp collisions at √s=7 TeV

    Get PDF
    This is the pre-print version of the Published Article which can be accessed from the link below.Charged-hadron transverse-momentum and pseudorapidity distributions in proton-proton collisions at √s=7  TeV are measured with the inner tracking system of the CMS detector at the LHC. The charged-hadron yield is obtained by counting the number of reconstructed hits, hit pairs, and fully reconstructed charged-particle tracks. The combination of the three methods gives a charged-particle multiplicity per unit of pseudorapidity dNch/dη||η|<0.5=5.78±0.01(stat)±0.23(syst) for non-single-diffractive events, higher than predicted by commonly used models. The relative increase in charged-particle multiplicity from √s=0.9 to 7 TeV is [66.1±1.0(stat)±4.2(syst)]%. The mean transverse momentum is measured to be 0.545±0.005(stat)±0.015(syst)  GeV/c. The results are compared with similar measurements at lower energies

    The handbook for standardized field and laboratory measurements in terrestrial climate change experiments and observational studies (ClimEx)

    Get PDF
    1. Climate change is a world‐wide threat to biodiversity and ecosystem structure, functioning and services. To understand the underlying drivers and mechanisms, and to predict the consequences for nature and people, we urgently need better understanding of the direction and magnitude of climate change impacts across the soil–plant–atmosphere continuum. An increasing number of climate change studies are creating new opportunities for meaningful and high‐quality generalizations and improved process understanding. However, significant challenges exist related to data availability and/or compatibility across studies, compromising opportunities for data re‐use, synthesis and upscaling. Many of these challenges relate to a lack of an established ‘best practice’ for measuring key impacts and responses. This restrains our current understanding of complex processes and mechanisms in terrestrial ecosystems related to climate change. 2. To overcome these challenges, we collected best‐practice methods emerging from major ecological research networks and experiments, as synthesized by 115 experts from across a wide range of scientific disciplines. Our handbook contains guidance on the selection of response variables for different purposes, protocols for standardized measurements of 66 such response variables and advice on data management. Specifically, we recommend a minimum subset of variables that should be collected in all climate change studies to allow data re‐use and synthesis, and give guidance on additional variables critical for different types of synthesis and upscaling. The goal of this community effort is to facilitate awareness of the importance and broader application of standardized methods to promote data re‐use, availability, compatibility and transparency. We envision improved research practices that will increase returns on investments in individual research projects, facilitate second‐order research outputs and create opportunities for collaboration across scientific communities. Ultimately, this should significantly improve the quality and impact of the science, which is required to fulfil society's needs in a changing world

    First measurement of the underlying event activity at the LHC with root s=0.9 TeV

    Get PDF
    A measurement of the underlying activity in scattering processes with p (T) scale in the GeV region is performed in proton-proton collisions at root s = 0.9 TeV, using data collected by the CMS experiment at the LHC. Charged particle production is studied with reference to the direction of a leading object, either a charged particle or a set of charged particles forming a jet. Predictions of several QCD-inspired models as implemented in PYTHIA are compared, after full detector simulation, to the data. The models generally predict too little production of charged particles with pseudorapidity |eta| LT 2, p (T) GT 0.5 GeV/c, and azimuthal direction transverse to that of the leading object
    corecore